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Abstract
Although parametrized Semiempirical Molecular Orbital Methods were especially

designed to obtain enthalpies of formation and other related thermodynamical parameters,
in some situations the predictions cannot be compared to the experimental results simply
because they present serious drawbacks.Therefore, there is room to apply a wide variety of
predictive methods for estimating thermodynamical properties, such as the well-known
Group Contribution Methods and the Quantitative Structure-Property Relationships. A
QSPR study of 163 enthalpies of formation, 37 Gibbs free energy changes, and 40 standard
entropies of elements is established for a representative set of acyclic and aromatic
compounds, on the basis of fundamental concepts on molecular structure such as the count
of atoms and types of chemical bonds. A recent method discovered in our group called the
Replacement Method is employed here to find the best models in a pool containing 33
descriptors. An 8 parameters-model was able to correlate the heats of formation with atoms
and bond types (R=0.9553, R

l-25%-o
=0.8200) but with great dispersion (S=19.173 Kcal/

mol). For the case of standard entropies (R=0.9813, R
 l-20%-o

=0.8659) and for free energies
(R=0.9869, R

 l-20%-o
=0.9000) the models obtained perform poorer than those calculated

with Semiempirical Methods.

Resumen
A pesar de que los métodos parametrizados de Orbitales Moleculares Semiempíricos se

diseñaron especialmente para obtener entalpías de formación u otros parámetros
termodinámicos, en algunas situaciones las predicciones no pueden compararse con los
resultados experimentales simplemente porque presentan serias anomalías. Por tanto, hay
lugar para aplicar una amplia variedad de métodos predictivos para estimar propiedades
termodinámicas, tales como los bien conocidos Métodos de Contribución de Grupos y las
Relaciones Cuantitativas Estructura-Propiedad. Se establece un estudio QSPR para 163
entalpías de formación, 37 cambios de energía libre de Gibbs, y 40 entropías estándar a
partir de elementos para un conjunto representativo de compuestos acíclicos y aromáticos,
sobre la base de conceptos fundamentales de estructura molecular como lo son la cuenta de
átomos y tipos de enlace químico. Se emplea un método reciente descubierto en nuestro
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grupo llamado Método de Reemplazo para encontrar los mejores modelos a partir de un
conjunto total de 33 descriptores. Un modelo de 8 parámetros fue capaz de correlacionar
los calores de formación con los átomos y tipo de enlaces (R=0,9553, R

l-25%-o
=0,8200) pero

con gran dispersión (S=19,173 Kcal/mol). Para el caso de entropías estándar (R=0,9813,
R

 l-20%-o
=0,8659) y para energías libres (R=0,9869, R

 l-20%-o
=0,9000) los resultados que se

obtienen resultan más pobres a los alcanzados con los Métodos Semiempíricos.

Introduction
Thermodynamics is a phenomenological theory of matter. As such, it draws its concepts

directly from experiments [1]. Thermodynamic parameters are measurable macroscopic quantities
associated with macroscopic systems, such as pressure P, volume V, temperature T, and magnetic
field B, which are defined experimentally. Macroscopic systems (like gases, liquids, or solids)
began first to be systematically investigated from a macroscopic phenomenological point of view
in the last century, and the laws thus discovered formed the subject of Thermodynamics. The
strength of this discipline is its great generality, which allows making valid statements based on a
minimum number of postulates without requiring any detailed assumptions about the microscopic
(i.e. molecular) properties of the system [2].

Thermodynamics, which makes up a logical subject of great elegance, is a powerful method
for studying chemical phenomena and can be developed quite independently of the atomic and
molecular theory. It has a permanence which might, for example, be compared with that of
Euclid’s geometric theorems in plane geometry, which is not shared by our ever-changing views
on the nature of atoms and molecules [3].

The prediction of thermodynamic and physical properties for organic compounds in different
conditions (i.e. temperature, pressure) is vital for the design of chemical and petrochemical plants.
Also, experimental measurements of some thermodynamic parameters involve experimental
difficulties and they are not always feasible, and the corresponding methods possess real drawbacks
[4,5]. Thus, it is necessary to resort to a theoretical calculation of these parameters, which is now
accessible because an important, fruitful and current field of research in contemporary chemistry
is the model and prediction of physical-chemistry properties of molecules [6,7]. This kind of
study is based on the paradigm that physical-chemistry and biological properties are dependent
on molecular structure. As a consequence, one of the most important points in such a research
is the selection of adequate descriptors containing the information stored in the molecular
structure [8].

The most common software packages used in chemical engineering design incorporate
efficient algorithms for the prediction of thermodynamic and physical properties of interest, by
means of the Group Contribution Methods (GCM) [9-11]. These techniques are easy to apply,
relying solely on the sum of contributions of each molecular structure fragment to a given
thermodynamic property. The basic assumption of these methods is the transferability concept
for a group; if this hypothesis does not hold, then GCM can be corrected with experimental data,
when available, to achieve better predictions. This converts GCM into a computational intensive
technique.

A drawback of GCM is that in its basic form (without corrections) it cannot model isomeric
structures; this is not a problem for small organic compounds, although the situation gets worse
for bigger size compounds with increasing number of conformers. Another associated problem is
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that there are not always measured data available to extend these methods to less common
compounds such as molecules containing fused aromatic rings or to organometallic compounds.
This is an inconvenient also present in semiempirical methods if they are not properly parametrized.

All commented limitations for GCM point to the need of employing a different theoretical
framework, such as that encompassed in the realms of the Quantitative Structure-Property
Relationships (QSPR). A fundamental difference between both methodologies is that in QSPR
the user can consider only theoretically defined molecular descriptors to represent the molecular
structure, not relying on empirical parameters for improving the model´s limitations. The graph-
theoretical approach to QSPR is based on a well-defined mathematical representation of the
chemical structure, relating a property (P) with a set of molecular descriptors (d) through an
arbitrary function (f), which usually represents a polynomial relationship. These molecular
descriptors are commonly named “topological indices” [12,13], they contain relevant information
about the structure. Owing to the complexity of molecular structures, it seems to be nearly
impossible to expect that a single set of descriptors would contain all the relevant structural
information. Therefore, the search for novel molecular structure descriptors continues and it is a
field of active research within the realm of QSPR theory. However, this search should not be
carried out at random. Instead it should follow some regular procedure based on the desired
attributes that a molecular structure descriptor needs to possess [8].

The most simple and obvious sort of graph theoretical indices, having a quite direct chemical
interpretation, are atoms and chemical bond types. Although they have been considered as suitable
molecular descriptors, they have not been widely employed. Several applications made by two
of us (P. R. D. and E. A. C.) have demonstrated their usefulness to predict physical-chemistry
properties and biological activities [14-18]. They can be computed rather easily and have the
advantage that they may be applied to a quite diverse sets of structures.

In a recent paper one of the authors (A. N. P.) has computed standard values of ΔHf, Sº
and ΔGf for a representative set of acyclic and aromatic compounds by means of the semiempirical
all-valence MNDO, AM1 and PM3 molecular orbital methods [19]. It was demonstrated the
existence of quantitative relationships between experimental data and theoretical results, although
some inconsistencies were noted.

The aim of this study is to present the results of the estimations of these three fundamental
thermodynamic parameters by exploring the performance of the elemental atom and bond-type
molecular descriptors, comparing the resulting predictions with those reported for the three
semiempirical methods. In contrast to GCM, where each structure is dissected in all its constituent
fragments (being a different number for each molecule) and using all of them to predict the
property value, in QSPR one has to select among all the fragments resulting from the entire set of
compounds, the most representative and common contributing the most to the property being
modeled. For this purpose we resort to the recently proposed RM technique, which is described
in next section. Then, we report results for the predictions of thermodynamic functions and discuss
them with respect to previous calculations. Finally, we state our main conclusions derived from
this study.
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Materials and Methods

Chemical Data
Using a set of 33 atom and bond types we represented the molecular structure for the

three thermodynamic properties under study. Although many QSPR studies have been proposed
to predict thermodynamical properties, most of them rely on homogeneous type of calibration
sets, since in this way the predictions are better. In the present report, we use a diverse data set
of compounds. The 163 ΔHf shown in Table 1 were extracted from the MOPAC manual [20],
in order to compare the model predictions with the reported MNDO, AM1 and PM3 calculations.
We chose the molecules appropriately in order to create a balanced calibration set, that is,
including in the set approximately the same number of molecules possessing a given functional
group in its structure. The experimental values of 40 Sº and 37 ΔGf were both obtained from
Pankratov’s paper [19] since the MOPAC manual does not report experimental values for them.

Computer Software
We computed the best calibration models with the Replacement Method [21], which

constitutes a good approximation to the combinatorial search (FS) of variables and allow studying
a pool D containing thousands of them. This new procedure simply consists in replacing a chosen
variable of the regression by another that minimizes S. The method is as follows: choose d
descriptors {X1,X2,…,Xd} at random and do a linear regression. Choose one of the descriptors
of this set, say Xi, and replace it for each of the D descriptors of the pool (except itself) keeping
the best resulting set. Since one can start replacing any of the d descriptors in the initial model,
then a regression equation with d variables has d possible paths to achieve the final result; for
example, the choice above will develop into path i. Next, choose the variable with greatest
relative error in its coefficient (except the one replaced in the previous step) and replace it with all
the D descriptors (except itself) keeping again the best set. Replace all the remaining variables in
the same way bypassing those replaced in previous steps. When finishing, start again with the
variable having greatest relative error in the coefficient and repeat the whole process. Repeat this
process as many times as necessary until the set of descriptors remains unchanged. At the end,
we have the best model for the path i. Proceed in exactly the same way for all possible paths
i=1,2,…,d, compare the resulting models, and keep the best one. Our numerical experiments
show that in this way one obtains a model almost as good as the best achieved with FS.

Results and Discussion
It is very common in the QSPR theory to built models not containing an excessive number

of descriptors, in order to make possible the interpretation of the established relationship in terms
of interaction mechanisms [22].



35QSPR Evaluation of Thermodynamic Properties of Acyclic and Aromatic Compounds

Table 1. Details of the descriptors appearing in the present study.

Label Description label description

C Number of C atoms Br Number of Br atoms

H Number of H atoms N-H Number of bonds between
N and H

Cl Number of Cl atoms I Number of I atoms

O Number of O atoms S Number of S atoms

F-N Number of bonds between N Number of N atoms
F and N

C-C
arom

Number of aromatic bonds C-O Number of single bonds
between two C atoms between C and O

F Number of F atoms C=O Number of double bonds
betweenC and O

NO
2

Number of nitro groups C-C
triple bond

Number of triple bonds
between two C atoms

C-C Number of single bonds
betweentwo C atoms

A simple procedure to control the model expansion is by plotting the correlation coefficients
of calibration (R) and leave-one-out cross-validation (Rloo), as a function of the number of variables
present in the model. By analyzing the plot, it is found that the statistical parameters of the model
improve up to a certain point called “break point”, beyond that, the improvement can be considered
negligible because the relative change in the parameters is less important. Consequently, the
model corresponding to the break point is supposed to be the best model in the set of variables
analyzed.

Figure 1. Model selection for ΔH
f
.
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Figure 1 shows this type of plot for ΔHf with a break point appearing at 8 variables
included in the model. The statistical parameters of the equation are the following:

ΔHf = 24 (±3) + 19 (±2) C – 12.0 (±0.8) H – 20 (±2) Cl – 48 (±2) O + 44 (±4) F-N – 7
(±1) C-Carom – 60 (±2) F + 88 (±5) NO2

(1)

N=163, R=0.9553, S=19.173 Kcal.mol-1, F=200.924

R
loo

=0.9468, S
loo

=20.307 Kcal.mol-1

R
l-25%-o

=0.8200, S
l-25%-o

=23.240 Kcal.mol-1

where the leave-many-out technique was studied for 100000 cases of exclusion of compounds
generated at random (for any of the three thermodynamic properties considered). Details of the
descriptors appearing in all the equations are given in Table 1. Figure 2 plots the dispersions
(difference between the experimental and predicted values of the property) as a function of the
experimental property, revealing that the deviations are randomly distributed and not following
any kind of pattern, also suggesting that data clustering is absent.

From Figure 3 it is clear that is possible to correlate the 163 ΔHf with atoms and bonds but
with great dispersion in the predicted values (S). This can be better seen in Table 2, where the
absolute errors in most of the cases are much greater than those achieved with any of the three
semiempirical methods. It is well known that experimental uncertainties for ΔHf are around 2-3
kcal.mol-1 [20,23-26].

The second property to consider is Sº; the set comprising 40 compounds is given in Table
3, and the corresponding plot for R and Rloo in Figure 4. The best regression found is for 8
variables not manifesting clustering of data (see Figure 5).

Sº = 46 (±1) + 3.5 (±0.2) C + 5.3 (±0.4) C-C + 11 (±2) I + 5.8 (±0.8) O + 12 (±1) S + 4 (±1)
N-H + 7 (±2) Cl + 10 (±2) Br     (2)

N=40, R=0.9813, S=2.946 cal.mol-1.K-1, F=101.037

Rloo=0.9722, Sloo=3.162 cal.mol-1.K-1

Rl-20%-o=0.8659, Sl-20%-o=6.925 cal.mol-1.K-1
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Figure 2. Dispersion plot for (2). Figure 3. Linearity of model (2).

Figure 4. Model selection for Sº. Figure 5. Dispersion plot for (3).

Other thermodynamical quantities under study are 37 ΔG
f
.
 
According to Figure 7, the best

model has again 8 descriptors, with predictions randomly distributed in Figure 8 and indicated in
Table 3.

ΔG
f
 = 4 (±3) + 9.1 (±0.5) C – 4.1 (±0.5) H + 14 (±3) N – 41 (±3) C-O – 45 (±4) C=O +

32 (±5) C-C
triple bond

 – 14 (±4) Cl  (3)

N=37, R=0.9869, S=6.754 Kcal.mol-1, F=130.681

R
loo

=0.9795, S
loo

=7.330 Kcal.mol-1

R
l-20%-o

=0.9000, S
l-20%-o

=8.538 Kcal.mol-1

Tables 2 and 3 reveal that, as was the case for ΔH
f
, the constitutional descriptors are not enough

to obtain better predictions for Sº and ΔG
f
 than those achieved with the more sophisticated

molecular orbital theory methods. Additional structural information is needed to describe better
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the behavior of the thermodynamical quantities, like that present in more elaborated topological
indices, geometrical or electronic variables. Despite these results, the naive descriptors showed
to be quantitative and able to establish relationships with the properties, although not as good as
desired. In the three cases considered a linear equation was found suitable as the mathematical
function of the model, according to the proximity of R to unity.

Figure 7. Model selection for “G
f
.Figure 6. Linearity of model (3).

Table 2. Experimental and predicted ΔH
f
 (Kcal.mol-1)

with associated errors when using semiempirical methods.

Nº Molecule exp. predicted error error error error

eq. (1) MNDO AM1 PM3 eq. (1)

1 Methane -17.89 -4.638 5.93 9.1 4.86 13.25

2 Acetylene 54.34 38.61 3.53 0.44 3.65 15.72

3 Ethylene 12.45 14.53 2.93 4 4.16 2.08

4 Ethane -20.24 -9.556 0.49 2.8 2.08 10.68

5 Allene 45.63 33.7 1.74 0.48 1.4 11.92

6 Cyclopropene 66.2 33.7 2.07 8.58 1.94 32.49

7 Cyclopropane 12.73 9.612 1.55 5.01 3.5 3.12

8 Propane -24.83 -14.47 0.15 0.53 1.17 10.35

9 1.2-Butadiene 38.8 28.78 5.3 1.73 0.85 10.01

10 1-Butyne 39.5 28.78 3.4 2.05 3.85 10.71

11 Cyclobutene 37.45 28.78 6.48 8.26 0.17 8.67

12 Methyl cyclopropene 58.2 28.78 4.48 6.56 0.63 29.41

13 Cyclobutane 6.78 4.694 18.72 7.82 10.62 2.09

14 Isobutene -4.3 4.694 2.25 3.1 0.93 8.99

15 Cyclopentadiene 32.1 47.95 0.08 4.9 0.4 15.85
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16 Methyl-silane -7.8 -28.72 5.86 3 4.16 20.92

17 Propene 4.88 9.612 0.07 1.66 1.49 4.73

18 Toluene 11.99 16.46 1.52 2.35 2.04 4.47

19 Propyne 44.39 33.7 3.03 1.02 4.2 10.68

20 1.3-Cyclohexadiene 25.4 43.03 10.98 7.93 5.06 17.63

21 Bicyclobutane 51.9 28.78 12.11 26.15 17.29 23.11

22 Hexane -39.92 -29.22 0.71 4.98 0.06 10.69

23 Cycloheptatriene 43.2 62.2 9.47 4.98 0.77 19.00

24 2.2.3.3-Tetramethylbutane -53.83 -39.06 44.93 17.41 9.38 14.76

25 Naphthalene 36.05 35.85 2.15 4.42 4.51 0.20

26 1.2.6.7-Cyclodecatetraene 85.11 71.53 17.25 13.62 5.45 13.57

27 Acetaldehyde -39.73 -33.26 2.59 1.87 4.5 6.46

28 Acetone -51.99 -38.18 2.54 2.75 1.37 13.80

29 Ethanol -56.2 -57.35 6.83 6.5 0.69 1.15

30 Propanal -45.5 -38.18 2.17 2.86 3.83 7.32

31 Cyclopentanone -46.03 -23.93 11.04 9.35 9.19 22.09

32 Acetic acid -103.3 -81.06 2.14 0.27 1.26 22.23

33 Ethylamine -11.4 -21.6 1.88 3.78 1.16 10.20

34 Acetonitrile 17.7 26.57 1.5 1.55 5.56 8.87

35 Methylamine -5.5 -16.68 2.07 1.91 0.29 11.18

36 Trimethylamine -5.67 -26.51 2.83 3.92 5.24 20.84

37 Iodoform 50.4 31.49 18.41 12.6 10.21 18.90

38 Methanol -48.1 -52.43 9.28 8.95 3.8 4.34

39 2-Methoxyethanol -90.07 -110 9.72 13.46 1.16 19.99

40 1.2.4-Trichlorobenzene 1.16 -4.351 0.98 1.68 3.56 5.51

41 Bromoethylene 18.71 26.57 2.92 0.78 5.05 7.86

42 1.3-Diiodopropane 10.8 9.612 3.98 1.64 8.04 1.19

43 Acetyl-iodine -30.2 -21.22 3.21 9.42 0.23 8.98

44 2.4.6-Tribromoaniline 38 45.46 2.96 2.46 10.96 7.47

45 1.4-Dibromobutane -20.55 4.694 2.89 1.49 5.77 25.24

46 Isobutane -32.41 -31.43 5.58 2.99 2.83 0.97

47 Nitromethane -17.9 0.09314 21.17 7.91 1.91 17.99

48 Hexachlorobenzene -8.6 -30.08 5.92 0.66 0.6 21.48

49 Fluoromethane -56.8 -52.53 4.13 4.24 2.98 4.27

50 Chloromethane -20 -13.21 2.52 1.03 5.3 6.78

51 1.2-Dichlorobenzene 7.89 4.225 0.58 1.25 3.17 3.66

52 1.4-Pentadiene 25.3 23.86 0.7 0.53 1.25 1.44

53 1-Chloronaphthalene 27.5 27.27 4.57 7.03 7.04 0.23
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54 2-Bromonaphthalene 41.97 47.89 1.11 3.35 6.12 5.92

55 Bromomethane -9.1 7.405 1.27 2.9 7.1 16.50

56 1.2.4.5-Tetrachlorobenzene -7.8 -12.92 6.23 5.8 7.29 5.13

57 Trifluoroacetic acid -255 -224.7 17.52 12.24 10.93 30.24

58 Chloroform -7.8 -30.36 6.23 5.8 7.29 22.56

59 Dichloromethylsilane -96 -45.87 1.45 2.48 7.08 50.12

60 Dichloromethane -22.96 -21.79 5.09 2.91 5.8 1.17

61 Chlorotrimethylsilane -84.6 -47.13 2.85 0.25 2.98 37.46

62 Trifluorochloromethane -169.2 -156.9 9.56 6.51 0.08 12.29

63 Benzene 19.81 21.37 1.44 2.14 3.58 1.57

64 Cyclopentane -18.3 -0.2233 12.23 10.56 5.64 18.07

65 Biphenyl 43.53 42.47 2.46 3.94 4.41 1.05

66 Fluorene 41.83 61.64 2.98 12.38 7.04 19.81

67 Phenanthrene 49.5 50.32 6 7.78 5.36 0.82

68 Anthracene 55.2 50.32 3.47 7.56 6.3 4.88

69 Octadecane -99.08 -88.24 3.18 28.15 6.11 10.83

70 Pyrrole 25.9 17.95 6.48 13.91 1.15 7.94

71 Pyridine 34.6 29.5 5.86 2.63 4.3 5.10

72 Neopentane -40.3 -24.31 15.63 7.46 4.4 15.98

73 Quinoline 47.92 43.97 3.3 4.16 0.49 3.95

74 Bicyclo(2.2.2)-octane -24.1 9.11 2.36 12.05 3.79 33.21

75 Acetamide -56.96 -45.31 9.79 6.22 7.56 11.64

76 3-Chloro-4-methylaniline 18 -4.159 10.54 11.63 12.36 22.15

77 Chloroethane -26.8 -18.13 2 0.61 4.71 8.67

78 Cyclopropyl benzene 36.02 30.71 1.52 8.15 6.24 5.31

79 Benzoic acid -70.1 -55.04 2.46 2.05 3.83 15.05

80 Fluoroacetylene 30 -9.277 14.37 14.81 11.91 39.27

81 Methylethyl sulfone -97.6 -110 144.6 21.75 18.94 12.46

82 Hexamethyl benzene -18.5 -8.129 21.36 5.83 3.42 10.37

83 Phenol -23.04 -26.41 3.72 0.71 1.29 3.38

84 Methyl thiocyanate 38.33 26.57 14.52 15.58 9.41 11.75

85 Methyl isothiocyanate 27.1 26.57 9.82 0.55 9.04 0.53

86 Thiophenol 26.9 21.37 3.55 1.24 0.7 5.52

87 Butanethiol -21.1 -19.39 1.85 3.16 1.59 1.71

88 Thiophene 27.6 29.99 1.18 0.21 3.07 2.40

89 2.3-Dihydrothiophene 21.8 28.78 18.03 11.67 8.43 6.98

90 5.6-Dimethyl chrysene 62.7 54.95 13.54 8.44 0.13 7.74

91 Iodobenzene 39.4 33.42 7 1.35 5.27 5.98
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92 Diethyl sulfone -102.5 -114.9 142.9 21.16 21.56 12.48

93 Isopropylamine -20 -26.51 3.61 0.74 1.22 6.52

94 Thiolacetic acid -43.5 -33.26 2.17 4.28 4.6 10.23

95 n-Propylamine -16.8 -26.51 1.47 5.33 1.12 9.72

96 Toluenethiol 23.6 16.46 3.42 1.29 1.35 7.14

97 Methylpropylthioether -19.5 -19.39 8.34 2.88 0.04 0.11

98 Tris(diethylamino) phosphine -54.7 -106.9 11.84 23.93 14.45 52.21

99 Ethylphosphine -12 -21.6 9.12 8.11 0.3 9.60

100 Tetraethylsilane -64.4 -63.15 17.73 7.52 13.61 1.25

101 Hexafluorobenzene -228.5 -265.9 15.06 2.78 0.89 37.49

102 Trifluoroacetonitrile -118.4 -117.1 5.15 1.15 3.3 1.29

103 Trifluoromethylbenzene -143.2 -127.2 15.57 8.71 8.17 15.97

104 Trifluoromethane -166.3 -148.3 2.45 6.22 4.3 17.97

105 N.N´-Difluorobenzylamine 1.79 -2.571 9.5 9.3 12.32 4.36

106 Fluorobenzene -27.76 -26.51 2.43 4.37 7.45 1.24

107 Tetranitromethane 18.5 14.28 76.32 34.4 12.22 4.21

108 1-Iodonaphtalene 55.9 47.89 3.99 2.5 9.93 8.01

109 Methyl nitrate -29.11 0.09314 16.61 2.29 3.37 29.20

110 N-Nitrodimethylamine -3.2 -16.86 25.45 24.83 4.39 13.66

111 Nitrobenzene 15.4 26.11 22.08 9.78 0.97 10.71

112 Nitroethane -23.5 -4.824 21.35 6.62 2.59 18.67

113 Ethyl decanoate -146.3 -130.2 9.85 10.05 5.07 16.05

114 Methyl 4-methylbenzoate -74.71 -64.88 8.78 5.53 7.11 9.83

115 4-Ethylbenzoic acid -84.99 -64.88 7.6 8.76 6.08 20.10

116 3.4 Dimethylbenzoic acid -86.62 -64.88 8.45 4.27 2.82 21.73

117 Formaldehide -25.95 -28.34 6.95 5.56 8.15 2.40

118 1.2-Dimethoxyethane -81.93 -114.9 11.51 17.78 7.81 33.05

119 t-Butanol -74.7 -67.19 10.36 3.03 3.37 7.51

120 Dimethylperoxide -30.1 -105.1 1.75 4.32 4.05 75.05

121 1.3-Propanediol -97.61 -110 12.63 16.6 2.83 12.45

122 Dimethoxymethane -83.21 -110 9.38 16.7 5.59 26.85

123 Methyl benzoate -66.84 -59.96 8.71 5.53 8.82 6.88

124 2-Ethylbenzoic acid -81.43 -64.88 6.92 7.17 4.62 16.54

125 2.5 Dimethylbenzoic acid -83.91 -64.88 8.09 1.88 1.8 19.02

126 2.4.6-Trimethylbenzoic acid -89.44 -69.8 3.77 2.22 1.72 19.63

127 Methylenecyclopropane 47.92 28.78 10.07 0.31 3.45 19.13

128 2.4.6-Trinitrotoluene 12.9 30.65 61.59 28.1 9.74 17.75

129 Methylcyclopropene 58.2 28.78 4.48 6.56 0.63 29.41
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130 Hexanitroethane 42.8 18.83 121.8 42.99 14.84 23.96

131 Fluoroethylene -32.5 -33.36 2.05 1.58 3.88 0.87

132 Fluorodinitrophenyl methane -44.2 -21.97 58.64 44.28 22.69 22.22

133 1.1-Difluoroethane -118.8 -105.3 5.32 0.15 6.84 13.45

134 Trimethylphosphine -22.5 -26.51 25.71 0.46 7.36 4.02

135 Diethylphosphine -25 -31.43 20.06 6.62 1.73 6.44

136 Isopropanethiol -18.1 -14.47 1.88 2.05 3.73 3.63

137 Diethyl thioether -19.89 -19.39 8.17 2.26 0.66 0.50

138 Thiacyclohexane -15.12 -0.2233 12.97 8.81 0.67 14.89

139 Bicyclo(2.1.0)-pentane 37.3 23.86 7.17 8.69 0.44 13.43

140 1.2-Dimethyl cyclopropene 46.4 23.86 7.15 8.36 0.64 22.53

141 Benzoyl chloride -26.1 -15.82 2.61 10.28 7.63 10.27

142 Chloro- pentafluoroethane -266.3 -257.6 18.58 10.52 1.55 8.69

143 Chlorodimethylsilane -69.9 -42.22 3.17 0.1 6.14 27.67

144 Tetrachloroethylene -2.7 -19.77 5.33 9.78 5.42 17.07

145 Diacetylene 113 76.95 9.85 6.96 10.58 36.04

146 Bromotrifluormethane -155.1 -136.2 8.47 10.49 2.78 18.81

147 1.5-Hexadiene 20.1 18.94 0.47 2.37 0.92 1.15

148 Benzyl iodide 25.1 28.5 3.47 5.7 12.45 3.40

149 Fluoroethane -62.9 -57.45 2.25 3.44 2.65 5.45

150 1.2-Dimethyl cyclobutene 19.8 18.94 13.46 7.07 3.71 0.85

151 t-Butyldifluoroamine -46 -38.42 24.84 17.01 14.39 7.57

N.N. N´.N´-tetrafluoro-

152 1.1-cyclohexanediamine -41.6 -43.2 16.84 4.95 9.94 1.61

153 t-Butylamine -28.9 -31.43 13.38 7.63 3.63 2.54

154 Diethyl peroxide -46.1 -114.9 7.76 7.22 0.78 68.88

155 Acetyl bromide -45.6 -21.22 2.33 11.23 2.03 24.37

156 Benzoyl bromide -11.6 4.795 0.6 12.12 3.03 16.39

157 1.1-Dibromoethane -9.8 14.53 0.56 4.18 5.15 24.33

158 Difluoro-dichloromethane -117.5 -117.5 7.3 10.45 1.42 0.08

159 Triphenylphosphine 78.5 51.53 27.11 20.54 11.47 26.96

160 Triethylsilane -39.5 -53.31 24.94 15.51 15.93 13.81

161 Ethylsilane -15 -33.64 6.71 1.51 4.8 18.64

162 Dichlorodimethylsilane -109.5 -50.79 1.76 5.22 1.48 58.70

163 Pentafluorobenzene -192.5 -218.1 9.28 0.4 3.78 25.60

Error = absolute value of the difference between predicted and experimental value for the property.
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Table 3. Experimental and predicted values of Sº (cal.mol-1.K-1) and ΔG
f
 (Kcal.mol-1).

Nº
molecule exp. Sº

predicted
exp. ΔG

f

predicted
(a)  Sº eq. (2)  ΔG

f 
eq. (3)

1 Methane 44.52 49.84 -12.15 -3.68

2 Ethane 54.85 58.73 -7.87 -2.85

6 Propene 63.8 62.27 14.99 6.21

7 Toluene 76.64 76.42 29.16 34.21

8 Propyne 59.3 62.27 46.47 46.94

9 Acetaldehyde 63.15 64.51 -31.86 -40.10

10 Acetone 70.49 73.39 -36.58 -39.26

11 Acetic acid 67.52 70.29 -90.03 -81.90

12 Acetonitrile 58.19 58.73 25.24 23.82

13 Methylamine 57.98 58.28 7.71 6.54

16 Methanol 57.29 55.62 -38.84 -45.48

23 Methylisothiocyanate 69.29 65.94 - - - -

25 Nitromethane 65.73 61.4 -1.66 14.76

26 Fluoromethane 53.25 49.84 -50.19 -51.87

27 Chloromethane 56.04 57.53 -15.03 -13.55

28 Bromomethane 58.75 60.24 -6.73 0.44

31 n-Hexane 92.83 94.27 -0.06 0.48

38 Benzene 64.34 67.53 30.99 33.37

40 Biphenyl 93.85 94.11 66.94 71.26

44 Benzoic acid 88.19 87.98 -50.29 -44.85

48 Phenol 75.43 73.31 -7.86 -8.43

61 Fluorobenzene 72.33 67.53 -16.5 -14.82

64 Iodobenzene 79.84 79.12 44.88 37.49

17 Methanethiol 60.96 62.4 -2.37 -3.68

18 Dimethylsulphoxide 73.2 71.72 - - - -

24 Methylisocyanide 58.98 53.38 39.91 23.82

29 Iodomethane 60.71 61.42 3.74 0.44

30 n-Pentane 83.4 85.38 -2 -0.35
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32 1-Pentanol 96.21 91.16 -35.79 -42.16

35 1-Chloropentane 94.89 93.08 -8.94 -10.23

36 1-Bromopentane 97.7 95.79 -1.37 3.76

39 Styrene 82.48 79.96 51.1 43.26

41 Ethynylbenzene 76.88 79.96 84.46 83.99

43 Acetophenone 89.12 91.08 0.44 -2.21

45 Benzonitrile 76.73 76.42 62.35 60.87

46 Aniline 76.28 75.97 39.84 4.38

49 Benzenethiol 80.51 80.09 35.28 43.59

53 Benzenesulphonic acid 87.88 91.65 - - - -

62 Chlorobenzene 74.92 75.22 23.7 33.37

63 Bromobenzene 77.53 77.93 33.11 23.50

(a)Number as in Ref. [19].

Figure 8. Dispersion plot for (5). Figure 9. Linearity of model (5).

Conclusions
We have presented a rather simple and direct calculation scheme to derive thermodynamic

parameters, such as heat of formation, entropy and Gibbs free energy. This approach is quite
different to the molecular orbital theory, which have to make some involved calculation procedures
to build the Fock matrix. The choice of topological descriptors is based on the most intuitive
chemical concepts: atoms and chemical bonds. Comparisons between the theoretical estimations
and experimental data revealed here that this sort of elementary descriptors have to be
complemented with others derived in a different way, that is to say, taking into account geometrical
and electronic characteristics of the molecular structure. At present, research along this line is
under development in our laboratories and results will be published elsewhere in the forthcoming
future.
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